Folks,
I read with interest Zohair Mehkri’s SMTAI 2020 paper entitled How Quantum Computing (QC) will Revolutionize Electronics Manufacturing. I will start by saying that he gives a very good Quantum Computing 101 overview. This is no easy feat, as QC is a difficult technology to understand. I will humbly state that I still struggle to understand the basics, and I’m sure I don’t understand QCs as well as he does.
Figure 1. IBM is a leader in QC. Image source: https://www.ibm.com/quantum-computing/
However, I have two main concerns with Zohair’s paper. One is that it may give the impression that QC is becoming a practical technology and will soon be widely available — to the point that we can use it to solve electronics manufacturing problems.
QCs are rare; there are about 30 worldwide, 15 of which are owned by IBM. Although to be fair, Shenzhen SpinQ Technology gave this recent announcement:
“On 29 January 2021 Shenzhen SpinQ Technology announced that they will release the first-ever desktop quantum computer. This will be a miniaturized version of their previous quantum computer based on the same technology (nuclear magnetic resonance) and will be 2 qubit device. Applications will mostly be educational for high school and college students. The company claims SpinQ will be released to the public by the fourth quarter of 2021.”
Since the device has only 2 qubits, it will more than likely be for educational purposes not intended to solve real problems. It will be interesting to see how it emerges later in the year.
Almost all QCs are superconducting, meaning that they require very low temperatures to operate as cold as -460° F, which is colder than liquid helium. They are also extremely delicate; even slight vibrations causes them to fail.
So, we might be able to rent time on a useful QC sometime in the future, but QCs won’t be common any time soon.
The other concern I have is what is the need for QCs? Most of the practical problems that face us can be solved by conventional computers. In addition, only certain types of problems can be solved by QCs. As stated in Wikipedia:
“However, the capacity of quantum computers to accelerate classical algorithms has rigid upper bounds, and the overwhelming majority of classical calculations cannot be accelerated by the use of quantum computers.”
QC is an exciting technology and many wonderful discoveries will no doubt come from it. However, I am skeptical that it will solve practical problems anytime soon.
Cheers,
Dr. Ron